Flood-dependent forests in a flood-intolerant world Can we coexist with cottonwood?

Once established, impressive growth and ability to persist

No effect of diking, channelization, or land use on average tree size

'River' more important; largest trees on the West Kettle (30 cm), smallest on Ellis Creek (18 cm)

Stem density of large trees (>40 cm diameter)

No difference due to river training Artifact of sampling?

Stem density of mid-sized trees (9-40 cm diameter)

No difference due to river training Artifact of sampling?

Stem density of new recruits (<9 cm diameter)

5600 stems/ha at reference sites and diked & channelized sites 3800/ha at diked sites

Fewer than 1800 stems/ha at high-gradient channelized sites

Stem density of new recruits

Pattern of high density at diked and channelized sites driven by Mission Creek sites

Okanagan River has low recruitment rates compared to other lowland rivers

Diked & channelized sites

Recruitment behind dikes virtually non-existent

Vegetation management? (Dike Maintenance Act)

Flow regime? Dike shape? Some other factor?

Mission diked and channelized

Okanagan diked and channelized

Concern about persistence on the Okanagan River

Can we promote renewal of cottonwood forests while meeting flood control objectives?

What about in-stream roles of cottonwood?

Stem density of new recruits

Trees allowed on dikes in conservation areas

Diking & channelization probably facilitate urban and agricultural encroachment

Better exclusion of grazing animals from riparian area when dike is adjacent to river?

Restoration

Floodplain re-engagement projects (dike setback)
Recruitment expected to improve So far, recruitment rates are low

Community to Community Growing Strong Together Cottonwood Restoration Project

Planting done in Fall 2017
73% survived the winter
17% of trees survived the first year

Further monitoring planned for 2019 and 2020

Cuttings 19% survived

Harvest thick stems

Plant close to the low water table

Seedlings 8% survived

Plant close to the annual low water mark

Choose an early autumn planting date

Plant on a warm day

and designing restoration projects to include appropriate topography, flow regime, and sediment dynamics for cottonwood reproduction

